
6.1  Introduction

In this chapter we will first introduce and review soft robotics research, with emphasis on 
how compliance and softness have changed the robotics landscape in the past two decades. 
We will then briefly discuss the key ideas in developmental robotics that are fundamental 
for understanding the relationship between biological and artificial systems, and examine 
how the developmental sciences and soft robotics are irrevocably linked, into what we 
have chosen to name “developmental soft robotics.” Here, in fact, the two fields can be 
merged into one in which the developmental sciences can aid in the design and make of 
soft robots that can then be used as platforms to better understand biological systems. We 
will finally discuss how phylogenetic development, ontogenetic development, and short-
term adaptation are indeed naturally suited to be embedded within a “soft” robotic context. 
(For further reading, see Trivedi et  al. 2008; Pfeifer, Iida, and Lungarella 2014; Laschi 
et al. 2016.)

6.2  Bioinspired Soft Robotics

Deformation is a fundamental characteristic of biological systems. Almost 90 percent of 
the human body is composed of soft tissue; many vital organs such as the heart, lungs, 
muscles, eye lenses, and more depend on deformation of materials.

In bipedal walking, for example, evidence has shown how the soft tissue of the body 
might not only cushion the impacts of each stride, but also save muscles the effort of 
actively dissipating energy, while performing a considerable amount of the total positive 
work, per stride, by soft tissue elastic rebound (Zelik and Kuo 2010).

In the past few decades, there has been an unprecedented advancement in material science 
and manufacturing techniques, furthering our knowledge of functional materials and empow-
ering artificial systems with newfound capabilities. These advancements, together with a 
better understanding of biological systems, have given rise to the era of soft robotics, in 
which bioinspired robotics platforms make use of soft and deformable materials to achieve 
more flexible, adaptable, and robust behaviors (Kim, Laschi, and Trimmer 2013; Hughes 
et al. 2016).

6	 Soft Robotics: A Developmental Approach

Luca Scimeca and Fumiya Iida

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2023081/c005400_9780262369329.pdf by guest on 24 November 2022



100	 L. Scimeca and F. Iida

Since the dawn of soft robotics, the application of material science and soft-body com-
pliance has changed the robotics landscape. In manipulation, for example, the “universal 
gripper,” a soft gripper capable of particle jamming through vacuum pressure control, has 
been shown to be able to grasp a large number of objects (Brown et al. 2010). Other solu-
tions for grasping and manipulation range from tentacle-like systems (Laschi et al. 2012) 
to pneumatic soft grippers (Yap, Ng, and Yeow 2016) and human-inspired soft-robotic hands 
(Hughes, Maiolino, and Iida 2018; figure 6.1).

Animal-inspired soft robots are among the most developed subareas of soft robotics, 
where the robot platforms range from worms (Seok et al. 2010) or caterpillars (Lin, Leisk, 
and Trimmer 2011) to octopuses (Laschi et al. 2012), fish (Katzschmann et al. 2018), and 
others (figure 6.1). In wormlike soft robots, for example, akin to their biological counter
parts, the contraction of longitudinal muscles followed by the contraction of circumferen-
tial muscles simulates a traveling wave along the body, generating locomotion (Trueman 
1975). In caterpillars, motion is generated by coordinated control of the time and location 
of the prolegs attachment to the substrate, together with waves of muscular contraction 
(Belanger and Trimmer 2000).

The ability to mimic these unique systems makes soft robots an exciting new field, 
where the limits of the (rigid) robots of the past century can be overcome with newfound 
solutions.

6.2.1  Soft Materials and Soft Actuation

The area of soft robotics is inevitably connected to the field of material science, in which 
new discoveries in the latter facilitate progress in the former. For a soft robot to be able 
to use material compliance to aid in robotics tasks, it is necessary for the make of the robot 
to be, at least in part, deformable. Elastomeric (polymer) materials, like EcoFlex or Drag-

a

b
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d e

Figure 6.1
Bioinspired soft robot examples. (a) Worm-inspired soft robot. Source: Seok et al. 2010. (b) Caterpillar-inspired 
soft robot. Source: Lin et al. 2011. (c) Octopus-inspired tentacle. Source: Cianchetti et al. 2011. (d) Human-inspired 
soft passive hand. Source: Hughes et al. 2018. (e) Fish-inspired soft robot. Source: Katzschmann et al. 2018.
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onSkin (Siegenthaler et  al. 2011), have been at the center of researchers’ attention for 
several years, with new substances being discovered every year. Moreover, the advent of 
three-dimensional printing technology has led to much faster robot design and testing 
operations than before, facilitating rapid and cheap prototyping in soft robotics.

Actuation poses one of the biggest challenges. In many animals, the coaction of a large 
number of muscles distributed over the body is capable of generating relatively high 
forces, facilitating coordinated and robust action. Replicating this ability is no easy feat, 
as the majority of the robotics solutions lack the ability to generate forces comparable to 
the industrial robots of the past.

Four main soft-actuation techniques currently exist: tendon driven, pressurized air or 
fluids, dielectric elastomeric actuators, or DEAs, and shape memory alloys, or SMAs (Kim 
et al. 2013). First, tendon-driven actuation mimics biological musculoskeletal systems, in 
which actuation is achieved through the pull and release of tendons, via the appropriate 
control of motors (figure 6.2a). Although a powerful and widespread actuation technique, a 
large number of tendons are usually necessary to achieve complex behaviors, and control 
complexity increases along with the number of motors necessary to control the tendons. For 
softer robots, like continuum soft robots, this type of actuation usually does not scale. 
Second, the employment of fluids is one of the most powerful actuation techniques for soft 
robots, capable of generating high forces and displacements. The actuation usually consists 
of varying the pressure inside predesigned chambers within the body of the robot to achieve 
their expansion and contraction and generate motion or morphological changes (figure 6.2b). 
However, these actuation systems are usually bulky and heavy and require high power 
sources, making them unsuitable for untethered robotics systems (Laschi and Cianchetti 
2014). Third, DEAs are made of soft materials that can be actuated through electrostatic 
forces (figure 6.2c). DEAs have been shown to have high-strain/stress and mass-specific 
power. However, the need for DEAs to be prestrained imposes rigid constraints on the robots’ 
design (O’Halloran, O’Malley, and McHugh 2008). Finally, SMAs, with the most common 
nickel titanium alloys, can generate force through a change in shape due to a rise or fall in 
the temperature of the material (figure  6.2d). Temperature change control, however, is a 
challenge. High voltages are usually required to achieve temperature changes, and robustness 
over varying temperatures in the environment is still an issue to be overcome (Rodrigue 
et al. 2017). Other methods exist; it is possible, for example, to induce pneumatic contraction 
by evaporating ethanol via resistive heating (Miriyev, Stack, and Lipson 2017) or to achieve 
bending through combustion (Tolley et al. 2014). Other issues, such as reduced output force 
or slow speed, however, come into play (Rich, Wood, and Majidi 2018). Soft robotics actua-
tion and material sciences are still an ever-changing field, with new solutions being expedited 
by fast prototyping and iteration.

6.2.2  Soft Robot Control, Simulation, and Learning

Soft-robotic control poses several challenges and opportunities. Here, the “degree of soft-
ness” matters. Take, for example, a rigid robotic hand with the palms and fingertips covered 
with an elastomeric material. The control of the hand is usually possible to achieve with 
classical methods (i.e., inverse kinematics), in which the complexity of the control depends 
on the complexity of the mechanical system. If the hand were entirely rigid, achieving the 
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appropriate control to perform a “light” touch might not be trivial. By appropriately exploit-
ing the mechanical passive dynamics of the soft fingers, the complexity of the control can 
be reduced to achieve the desired grasping behavior, averting the need for submillimeter 
precision in robot control (Pfeifer, Lungarella, and Iida 2007; Iida and Laschi 2011). 
However, as the “degree of softness” in the body increases, new challenges arise.

A robot made entirely of elastomeric materials—for example, one emulating the tentacle 
of an octopus or the trunk of an elephant—cannot be controlled classically; moreover, 
proprioception and simulation become problematic. As opposed to the hard links with 
sliding or rotational joints in classical robots, the continuity and softness of the body makes 
the control and simulation of continuous soft robots much more difficult. Novel actuation 
methods aid robotics researchers in their endeavors to achieve desired robot control 
(section 6.2.1), and new sensing and control methods are discovered on a daily basis (Rus 
and Tolley 2015). To achieve autonomy and go beyond open-loop control for soft robots, 
both proprioception and tactile sensing are required.

Much effort has been put into the sensorization of soft robots. The most common soft 
sensors are perhaps strain sensors, which are soft, deformable sensors capable of sensing 
body deformations through stretching. It is thus possible to embed such sensors into the 
(soft) body of a robot without influencing its ability to deform. Some of the most widespread 
sensors are based on resistive (Homberg et al. 2015) or capacitive (Maiolino et al. 2015) 
technologies. Recently, work in Galloway et al. (2019) and Scimeca et al. (2019) have shown 
how it is possible to achieve a high-fidelity proprioceptive understanding of a continuum 
soft body through sensorization via fiber-optic and capacitive tactile sensors, respectively.

In the context of control and simulation, learning plays a fundamental role. With the 
infinite degrees of freedom posed by a continuum soft body, for example, precise control 
via classical methods is hard and usually does not scale. Model-based solutions relying on 
the piecewise constant curvature assumption have been shown to work for small, tentacle-
like robots (Della Santina et al. 2018). However, the error in the controller always increases 
with an increase in the number of soft segments within the robots. The models, in fact, are 
usually too simplistic to accurately capture the complexity of continuum soft robots. Learn-
ing in this case has been shown to be useful in compensating for a lack of knowledge or 
model complexity (Scimeca, Maiolino, and Iida 2018, 2020; Rosendo, von Atzigen, and 
Iida 2017).

6.3  Developmental Soft Robotics

Cognitive developmental robotics (CDR) is an area of research in which robotics and the 
developmental sciences merge into a unique field, one that seeks to better robotics with 
insights from developmental sciences and further our understanding of developmental 
sciences through the use of robotics platforms (Lungarella et al. 2003). The need for CDR 
to be a research area on its own arose at the dawn of the twenty-first century from the 
need to understand not only the cognitive and social development of individuals, as explored 
in the area of epigenetic robotics (Zlatev and Balkenius 2001), but also the acquisition and 
development of motor skills and how they, as well as morphology, influence the develop-
ment of higher-order cognitive functions (Lungarella et al. 2003; Asada et al. 2001, 2009). 
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In this context, robots can be used as experimental subjects, where developmental models 
can be implemented in robotics platforms, and scientists can gain insights from behavioral 
analysis, an approach known as synthetic methodology (Scheier and Pfeifer 1999; Sporns 
2003).

In stark contrast to the traditional computationalist approach, in developmental robotics 
there is no clear separation between the physical body, the processes that determine reasoning 
and decision-making (cognitive structure), and the symbolic representation of entities in the 
world. Rather, these processes influence each other, and intelligence emerges from their 
interaction. Developmental robotics is treated in detail in chapter 3.

One of the most difficult tasks in modern-day robotics is to achieve an appropriate robot 
design for a robot to perform certain tasks in the world. The advent of soft robotics, if any-
thing, has increased the complexity of robots, revoking the rigidity constrains established in 
the earlier century and bringing about a new era. In this new era, robot design is driven by 
factors much like biological systems, in which functional morphology, coordinate sensorimo-
tor action, physical adaptation, and embodiment all contribute to the “robot’s survival” in 
the world and to its ability to see a task to completion.

Developmental soft robotics aims to bring together the areas of soft robotics with those 
of developmental robotics and the developmental sciences. These, in fact, are irrevocably 
linked, as we will show.

6.3.1  Soft Robotics and Developmental Timescales

Within the developmental sciences, in its simplest form, the development of a biological 
organism can be distinguished on three different scales: phylogenetic, ontogenetic, and 
short-term.

In biological organisms, phylogenetic development has the largest timescale, in which 
changes happen at the level of groups of organisms, over many generations, and processes 
such as natural selection are responsible for certain “traits” surviving and evolving, while 
others become extinct. Akin to phylogenetic development is soft robotics design, in which 
the design of robots is adaptive and ever changing to comply and conform to the task the 
robot must achieve. Currently, much of the adaptation is due to human design and biased 
by human skill and experience. However, new methodologies for autonomous designs are 
a hot research topic, and processes such as evolutionary algorithms have shown promise 
in the past (Nolfi and Floreano 2000; Doncieux et al. 2015).

Ontogenetic development concerns changes throughout and within the life span of an 
organism and includes growth and bodily adaptation. The ability of robots to “morph” 
throughout their life span to achieve desired behaviors has been one of the key advantages 
of soft robots, as opposed to their rigid counterparts of the previous century. Robots navi-
gating through growth like fungal hyphae (Hawkes et al. 2017), elongating their bodies 
due to pressure and changing their stiffness to alter their body dynamics and achieve dif
ferent behaviors (Cianchetti et al. 2013), are examples of such adaptability.

Short-term adaptation refers to the shortest adaptive and developmental timescale of 
all, in which adaptation needs to be achieved instantaneously. Short-term adaptation is 
perhaps the most naturally suited to be discussed in a soft setting. In the past this type of 
adaptation needed to be actively achieved at the control level, where real-time control 
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would allow short-term adaptive behavior through mechanical or sensory feedback. Within 
the soft robotics framework, much like biological organisms, the short time adaptation is 
just a consequence of the soft, instantaneous deformation of the soft body itself. When we 
delicately slide our finger through a ridged surface, for example, the need for complex 
and precise control is voided by the ability of our dermis to deform and conform to the 
surface under our touch. Much like the illustrated example, the compliance and softness 
of materials, in soft robots, can achieve short-term adaptation. The mechanical feedback 
becomes only a physical consequence of contact, and compliance can naturally suppress 
the need for complex controllers. Figure 6.3 illustrates the main idea behind the develop-
mental soft robotics framework.

6.3.2  Functional Morphology and Morphological Computation

When designing robotics systems, if shape was initially the most salient of morphological 
features, with the advent of soft robotics this may no longer be the case. Materials at dif
ferent levels of elasticity have demonstrated the ability to perform “computation” (Scimeca 
et  al. 2018; Eder, Hisch, and Hauser 2018). Recent work in Scimeca et  al. (2018), for 
example, has shown how complex haptic information can be used to classify objects based 
on different properties, solely based on clustering analysis. The simplicity of the inference 
is possible due to a “soft filter” or elastic layer between the tactile sensor and the object. 
When changing the properties of the elastic layer, the tactile information is appropriately 
influenced (spatially filtered) in order to induce object similarities with respect to different 
object properties, like edges or elongation. The “intelligence” is here in the body, since 
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the body’s ability to appropriately mold the sensory information allows for the agent’s 
higher cognitive functions to solve the object classification problem with simple clustering 
methods, without prior training or supervision, an otherwise impossible feat.

A paradigm trying to make use of the complex body-environment interactions is the 
“reservoir-computing” framework of computation. The original idea behind reservoir 
computing begins with network computation, in which an input is fed to a network, which 
computes a corresponding output. In reservoir computing, a fixed random dynamical system, 
also known as a reservoir, is used to map input signals to a higher-dimensional space. The 
“readout” final part of the network, then, is trained to map the signals from the higher-
dimensional space to their desired output. As previously mentioned, soft robots, as well as 
biological organisms, are usually made, at least in part, of soft materials. The body dynam-
ics of soft robots are thus very complex, highly nonlinear, and high dimensional, making 
control challenging. Through the reservoir-computing paradigm, it is possible to capitalize 
on the complexity of such a system by exploiting the soft body as a computational resource, 
using the body dynamics to emulate nonlinear dynamical systems, and, as a result, off-
loading some of the control to the body itself (Nakajima et al. 2013, 2015). Nakajima et al. 
(2014), for example, have shown it is possible to control a complex continuum soft arm, 
inspired by the tentacle of an octopus, in a closed loop without any external controller, by 
using the body of the robot as a computational resource. In this light, high nonlinearity and 
complexity may be a desirable property of the body, and design might have to be thought 
of accordingly.

An additional property that allows soft bodies to be used as a computational resource 
is memory. The soft body dynamics of soft robots, in fact, can exhibit short-term memory, 
allowing robots to emulate functions that require embedded memory (Nakajima et  al. 
2014). When underactuating a continuum soft robot, for example, it may be that the control 
mechanism is not deterministic with respect to the behavior of the robot. In these cases 
the behavior of the robot may depend not only on the induced control and its current state 
but also on the history of the previous robot states, as it may be the case when actuating 
a soft tentacle arm by moving one of its extremities.

6.3.3  Emergent Behaviors of Soft Robots

At the dawn of the twenty-first century, the concept of “morphofunctional machines” was 
proposed. Morphofunctional machines were defined as those that were adaptive by being 
able to change their morphology as they performed tasks in the real world (Hara and Pfeifer 
2003). In this context, changes at different timescales were already argued to be important—
that is, short-term, ontogenetic, and phylogenetic, or evolutionary. It is important to note that 
the adaptation and the resolution of the task here is achieved not at the control level but at 
the morphological level.

As advocated by the developmental robotics paradigm (chapter  3), intelligence and 
coordinated action are the result of complex interactions between the body, the mind, and 
the environment. The latter, in fact, plays an important role in determining the behaviors 
of the artificial or natural organisms living within it.

One of the most influential experiments of the last two decades was the “dead fish 
experiment,” performed in collaboration with Harvard and the Massachusetts Institute of 
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Technology (MIT) in 2005 (Beal et al. 2006). In the experiment, a dead fish was able to 
swim upstream even when its brain was clearly sending no control impulse. Upon further 
study it was apparent how the streamlined body of the fish, passively oscillating, was 
capable of turning the surrounding energy into mechanical energy and thus propel itself 
forward passively. Although the morphology and make of the body allowed the dead fish 
to transduce the surrounding energy, the environment was the enabling factor. The vor-
tices created by water streams were key in the experiment, as they generated the energy 
to be transduced and recreated the conditions for the body to manifest its propelling 
abilities. The interaction between the body and the environment were, in fact, the decisive 
factors in determining the observed behavior. A similar influential experiment was the 
passive dynamic walker. The make of the robot, with kneecaps, springs, pendulum-like 
leg swings, and more, was capable of stable, humanlike, and low-energy bipedal locomo-
tion without any complex control. However, the environment initiated and stabilized the 
walking locomotion, as it manifested when the robot was placed on a downward slope 
(Collins et  al. 2005), allowing the potential energy to be skillfully turned into kinetic 
energy.

In robot design it is therefore always necessary to take the environment into account. 
Much like the examples previously mentioned, the body and the brain are often not enough 
to achieve useful objectives. Things in the world exist to affect and change their surround-
ings and live within the environment they are situated in (Matarić 2006). In this context 
it is in the interplay of the body and the environment that intelligent, situated behavior 
can be observed and that morphology can be empowered and purposefully adapted.

6.3.4  Sensing and Perception of Soft Robots

In nature, morphology plays a fundamental role within the sensing landscape, mechani-
cally converting, filtering, and amplifying sensor stimuli from the outside world to make 
sense of the surrounding environment or internal states (Towal et al. 2011; Iida and Nurza-
man 2016). In rats and mice, for example, vibrissae, or sensitive tactile hairs, have been 
known to confer to these mammals specialized tactile capabilities, aiding them in a number 
of sensory discrimination tasks (Prescott et al. 2009). In a similar manner, most mammals 
have evolved to mediate vision through compound eyes, compromising resolution for 
larger fields of view and high temporal resolution, and enabling fast panoramic perception 
(Land and Nilsson 2012). Within the biomimetic robotics field, attempts have been made 
to endow robotics systems with the capabilities of organisms observed in nature. Haptic 
robot perception through whiskers (Pearson et al. 2011) and compound vision (Floreano 
et al. 2013) are two such examples (figure 6.4).

Soft sensing is one of the most popular fields within the soft robotics landscape. Aug-
menting soft robotics systems with the ability to sense the environment can enable robots 
to react to unknown events, to improve their control and morphology over time, and to 
capture information or reason about entities in the world. Sensorizing soft robots is no easy 
task. One of the goals within this field is to devise sensors that themselves exhibit some 
“soft” behavioral characteristics; usually, flexibility (i.e., can be bent) and stretchability (Lu 
and Kim 2014) are desirable. Currently, approaches to achieve stretchable electronics include 
wavy circuits (Majidi 2014; Rogers, Someya, and Huang 2010) and conductive liquids (Cheng 
and Wu 2012). One of the most widespread soft sensors are strain sensors, shown to be highly 
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elastic (Muth et al. 2014). New embedding methodologies have also demonstrated the pos-
sibility of embedding strain sensors within elastomers through three-dimensional printing 
techniques. Other flexible sensing technologies such as capacitive tactile sensing (Maiolino 
et al. 2013) and fiber optics (Galloway et al. 2019) have been used within soft robotics 
systems.

As previously mentioned, sensorimotor coordination and morphology can enhance the 
sensing capabilities of robotics systems. Sensors should not be thought of simply as inde
pendent and self-sufficient technologies. Instead, it is fundamental to think of sensor 
technologies as apparatuses that reside within a body. The body dynamics derived from 
its morphological properties, coupled with the environment the robotic system is situated 
in, should all contribute to the sensor morphology, its characteristics, and its perceptual 
capabilities. The appropriate coupling of these factors has been shown to improve the 
sensing capabilities of robotic systems (Iida and Pfeifer 2006). In Hughes and Iida (2017), 
for example, the sensorization of a universal gripper was achieved with a pair of conduc-
tive thermoplastic elastomer (CTPE) strain sensors (figure 6.4d). Differential sensing was 
then used to compute deformations within the soft body. Morphology, however, was key. 
By weaving the strain sensor in different patterns within the soft gripper, information 
regarding the magnitude, orientation, or location of a deformation could be detected. 
Because such sensing is also inescapably linked to motor control, mechanical dynamics, 
and the objectives of the robotic system, the concept of “adaptive morphology” has 
recently been proposed (Iida and Nurzaman 2016), wherein the iterative design, assembly, 
and evaluation of sensor methologies attempt to explain the adaptive nature of the percep-
tual abilities of living organisms.

a b c

d e

Figure 6.4
Bioinspired flexible and soft sensing examples. (a) Artificial compound eyes. Source: Floreano et al. 2013. 
(b) Robotic tactile vibrissal sensing. Source: Pearson et al. 2011. (c) iCub robot with large-area flexible capacitive 
tactile skin. Source: Hoffmann et  al. 2017. (d) Conductive thermoplastic elastomer sensorized universal gripper. 
Source: Hughes and Iida 2017. (e) Stretchable and conformable sensor for multinational sensing. Source: Hua et al. 
2018.
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6.3.5  Adaptation and Growth

The principles previously discussed encourage a different approach to design, in line with 
endowing robots with the ability to adapt to ever-changing environments and indeed make 
use of the environment as a means of solving their assigned tasks. Besides design principles 
at a phylogenetic scale and instantaneous deformation on the short-term scale via material 
properties and design, another important factor is ontogenetic change and adaptation. Plants, 
for example, are capable of continuously changing their morphology and physiology in 
response to variability within their environment in order to survive (Mazzolai, Beccai, and 
Mattoli 2014). Inspired by the unique abilities of plants to survive in diverse and extreme 
environments, a stream of researchers have more avidly tried to reproduce some of their 
adaptivity in robotics systems. Plantoids, or robotic systems equipped with the distributed 
sensing, actuation, and intelligence to perform soil exploration and monitoring tasks, have 
started to gain traction in this direction (Mazzolai, Beccai, and Mattoli 2014). Rootlike 
artificial systems in Sadeghi et al. (2013) and (2014), for example, have been shown to be 
able to perform soil exploration through novel methodologies simulating growth via elonga-
tion of the robot’s tip. Other plant-inspired technologies in biomimicry and the material 
sciences include Velcro, from the mechanisms behind the hooks of plant burrs (Velcro SA 
1955), bamboo-inspired fibers for structural engineering materials (Li et  al. 1995), and 
novel actuation mechanisms in Taccola et  al. (2013) based on reversible adsorption and 
desorption of environmental humidity and, in Mazzolai et al. (2010), based on the osmotic 
principle in plants.

Another important factor in ontogenetic adaptivity is the ability of organisms to mend 
their own tissue over their life spans. Endowing artificial systems with self-healing abilities 
has recently become of primary importance, setting the landscape for untethered robots to 
“survive” for longer periods of time in more uncertain and dynamic task environments. 
Self-healing of soft materials is typically achieved through heat treatment of the damaged 
areas, which allow some polymers to reconnect and retrieve most of their structural proper-
ties. In (Terryn et al. 2017), for example, a soft gripper, a soft hand, and artificial muscles 
were developed with Diels-Alder materials (Scheltjens et al. 2013). In the developed systems, 
the Diels-Alder materials were shown to be reversible at temperatures of 80°C, recovering 
up to 98 to 99 percent of the mechanical properties of the polymers postdamage.

6.3.6  Tool Use and Extended Phenotype

In biology, the phenotype is the set of observable traits of an organism, including its mor-
phology, developmental process, and physiological properties. The idea of extended phe-
notypes was first introduced by Richard Dawkins (1982) when he argued that the original 
concept of phenotype might have been too restricted. In fact, the effects that a gene may 
have are not limited to the organism itself but to the environment the organism is situated 
in, through that organism’s behavior. The coupling of an artificial agent and its environ-
ment was discussed in section 6.3.3. The extended phenotype notion, however, extends to 
even more radical concepts.

One of the most fascinating examples of this is found in primates, corvids, and some 
fish, which have been found to purposefully make and use “tools” to achieve goals within 
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their environments, such as the acquisition of food and water, defense, recreation, or 
construction (Shumaker, Walkup, and Beck 2011).

Extending the phenotype concept, the observable traits of the organisms should be 
augmented to include their extended functionalities, behaviors, and morphology, as derived 
from the use of the tool in question. When a primate is holding a small branch, for example, 
the physical characteristics of the primate are undeniably changed: its reach is longer, and 
its weight and morphology are affected, as is its stance to balance on two or three limbs 
or its ability to affect the environment around it. Under the extended phenotype concept, 
these changes must be captured within the phenotypic traits of the organism.

In the context of soft developmental robotics, the ontogenetic development of robotics 
systems should include their ability to adapt to their environments over their life span (physi-
cal adaptation) and indeed their ability to augment their functionality by the active creation 
and use of tools initially excluded from their phenotypic traits. This ability was previously 
investigated in Hoffmann et al. (2010) and Nabeshima, Kuniyoshi, and Lungarella (2006), 
where it was obvious that at the foundation of the idea of tool use was the concept of body 
schema (cf. chapter 3). The body schema in this scenario requires adaptability and alterability 
throughout ontogenetic development to cope with the changes in one’s body, including 
growth, as well as with the extended capabilities conferred by the use of tools. An under-
standing of the tool is necessary here (Wang, Brodbeck, and Iida 2014). Nabeshima, Kuniyo-
shi, and Lungarella (2006) argued that the temporal integration of multisensory information 
is a plausible candidate mechanism to explain tool use incorporation within the body schema. 
Another core component in this context is proprioceptive sensing, or the ability to sense 
self-movement and body position. Proprioception also plays a significant role in the percep-
tion/action model of body representations (de Vignemont 2010).

6.4  Conclusion

Throughout this chapter we have examined the various aspects of bioinspired robotics, with 
emphasis on soft robotics and the idea that intelligence is exhibited as an interplay, and 
reciprocal dynamical coupling, of the brain, the body, and the environment. The concept of 
developmental soft robotics was introduced in this context, in which some design principles 
can be established on three different timescales, aiding and enabling roboticists and research-
ers to develop systems for a new generation of robots. Many enabling technologies for 
sensing and actuation have driven progress in the past few decades and have allowed robots 
to pass from rigid and industrial to soft and human-friendly. These robots have been shown 
to achieve locomotion, to pick up and manipulate objects, to safely interact with humans, 
and much more. However, many challenges still await this field, as the road to the ultimate 
goal of creating machines with abilities akin to those of organisms in the animal world is 
only in its early stages.

6.4.1  Physical Soft Robot Evolution

On the phylogenetic timescale, the question of how to achieve complex embodied behavior 
has been answered by nature for a very long time. The concept of evolution in biological 
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organisms is fairly straightforward, where evolution is thought of as the change in inheritable 
characteristics of populations over successive generations (Hall and Strickberger, 2008). Due 
to various sources of genetic variation, new generations have increasingly different traits, 
and via a mediating process like that of natural selection, some traits will ensure higher or 
lower chances of survival (Scott-Phillips et al. 2014). Eventually, the surviving population 
has all the different traits that we can now see in the immense variety of living organisms 
on our planet, which have adapted to use a plethora of different methodologies and tech-
niques to ensure their survival.

The field of phylogenetics in the context of soft robotics is tightly coupled with this 
concept, and consequently, this field has a major impact on emergent design and control in 
robotics. In the area of “evolutionary robotics,” evolutionary computation is used to develop 
physical designs or controllers for robots (cf. chapter 4). Evolutionary computation takes 
inspiration from biological evolution. In robotics, for example, it is possible to create an 
initial set of candidate robots and encode their physical and or control characteristics numeri-
cally. By testing the robot population against a specific task, it is then possible to identify 
which combination of morphology and control performed better. The encoded characteristics 
of the best-performing robots can then be perturbed and used to create a new generation of 
robots that can be tested again. The iteration of this process for thousands of iterations has 
been shown to achieve robust controls (Mautner and Belew 2000; Fleming and Purshouse 
2002) and designs (Lund, Hallam, and Lee 1997; Lipson and Pollack 2000; Pfeifer, Iida, 
and Bongard 2005; Vujovic et al. 2017; Brodbeck, Hauser, and Iida 2015).

One of the biggest limitations of evolutionary algorithms lies with the resources and time 
necessary to achieve good controllers or designs. Because the iteration of robot design, robot 
testing, and robot evaluation are very time-consuming, it is generally not feasible to apply 
evolutionary algorithms in very complex problems by starting from a generic, nonbounded, 
encoding of robot characteristics. The world of simulation has historically been more suited 
for evolutionary algorithms (Lipson and Pollack 2000; Mautner and Belew 2000; Nolfi et al. 
1994) given the ease with which populations can be created, tested, and iterated over. The 
controllers and designs found, however, are usually not robust real-world solutions, as 
simulation environments are still very limited, and the solutions found within them do not 
necessarily correspond to solutions in the real world (Jakobi, Husbands, and Harvey 1995). 
Moreover, depending on the complexity of the problem, computational resources are still an 
issue.

In soft robotics, given the complexity of the bodies and the interactions emerging from 
them, design and control pose two of the biggest problems. Evolutionary algorithms find 
themselves suited as a candidate solution, but the limitations previously mentioned still apply. 
Further advancements in virtual reality engines, new manufacturing methods for fast proto-
typing, advancements in material science, and the ever-increasing power of computing, 
however, may bypass some of the these limitations in the near future.

6.4.2  Complexity and Scalability

As of today, the robots we see still “feel” unnatural; they move slowly and sluggishly; 
humanoid robots still do not possess the ability to walk, run, or move the way humans do; 
they cannot reason about the world the same way we do and they get confused when 
unknown events occur (Pfeifer, Lungarella, and Iida 2012). One of several reasons con-
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tributing to this fact is complexity. The number of actuators and distributed sensors present 
in humans is much too high to be replicated by motors and standard sensors in machines. 
This complexity poses a problem, as does controlling the coupling of a high number of 
motors and sensors. Even when dealing with subproblems, like humanoid hands, the 
complexity may very well already be too high to try and tackle with standard methods. 
Some attempts to replicate complexity were made, for example, by replicating in a robotic 
manipulator many of the degrees of freedom present in a human hand (Tuffield and Elias 
2003). This approach, however, did not give the results many were hoping for, as complex-
ity in the body was coupled with complexity in the control, and achieving an adaptable, 
smooth grasp and manipulation behavior was no easy task. Recent advances have shown 
how an underactuated, or even passive, hand can achieve complex behaviors, if its interac-
tions with the environment are appropriately exploited (Hughes et al. 2016, 2018). It is 
here that complexity can be displaced, since complex behavior can emerge from simple 
design when appropriate interactions take place.

Within this framework, many questions remain. It is, in fact, unclear how design should 
be achieved to avoid or exploit complexity. Exploiting environmental constraints is no easy 
feat, as the constraints to be exploited are also tightly coupled with the task at hand. In soft 
robotics the make of the robots themselves leads to highly nonlinear behaviors and robots 
with complex dynamics. Paradigms like that of reservoir computing can capitalize on the 
complexity of such structures, using them as a computational resource and thus making 
complexity a desirable feature. Control, however, is still hard to achieve, and mathematical 
models fail to comprehensively account for dynamical interactions when the complexity of 
the body becomes too high. This complexity presents infinite challenges and opportunities, 
which the ever-changing landscape of robotics will have to face in the near future.

6.4.3  Learning through the Body

The advancements in artificial intelligence (AI) in the last two decades have begun a scien-
tific revolution, endowing machines with the possibility to achieve superhuman performance 
levels in several different fields, like image-based object detection (Schmidhuber 2015), 
virtual agent control (Mnih et al. 2015), and haptic texture identification (Fishel and Loeb 
2012). In robotics, machine learning has been extensively used both on the perceptual side, 
such as for object detection and recognition, and on the control side, such as for robot trajec-
tory planning and motor control.

The most powerful machine-learning algorithms make use of supervision, or the knowl-
edge of target labels, to improve performance over time or trials. Broadly speaking, from 
the machine-learning point of view, it is common to try to solve a task by fitting a function 
to sensor or observation data, and thus to try to achieve good performance on the same 
(or a similar) task when new data is available. The data could, for example, be streaming 
images from a camera mounted on an indoor mobile robotic platform, and the supervised 
machine-learning module could learn when and how to turn the wheels left and right, 
based on collected and labeled visual feeds in a similar indoor environment. Throughout 
this chapter we have treated the concepts of soft morphology with the repercussions of 
what are known as morphological processing, sensorimotor coordinated behavior, and soft 
environment interactions. In similar cases to the example above, it is common for this 
interconnection of mind, body, and environment to be neglected. In fact, in soft robotics, 
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as well as other robotics areas, the data is usually perceptual information collected by the 
robot itself. The perceptual information here is influenced by the morphology of the robot’s 
body, as well as the way in which the robot interacts with entities in the world. The soft 
robot can thus be seen as a reality filter, which can act in its environment and affect the 
information in the way most appropriate for learning.

Previous research has shown robots to be capable of purposefully affecting the informa-
tion gathered from their environment through both morphological processing and senso-
rimotor coordination (Pfeifer and Scheier 1997; Pfeifer, Iida, and Gómez 2006). In this 
context, not only the information can be structured so it is rendered suitable for learning, 
but the structure information itself can guide both the morphology and the control of the 
robot, creating a sensorimotor and morphological adaptation loop capable of intrinsically 
driving the robot’s behavior. We use the term “soft morphological computation” to describe 
the ability of a soft robot to understand how its own body and actions filter the information 
retrieved from the world, and change its configuration and interactions accordingly to 
optimize information retrieval. This simplification can then drive learning and further the 
adaptive capabilities of autonomous robotics systems. In Scimeca, Maiolino, and Iida 
(2018), for example, the soft morphology of the robot is shown to be capable of achieving 
the cluster separation of stimuli belonging to different object types. Learning can therefore 
be achieved with unsupervised methods, as the “labels” or classes come from skillful 
body-environment interaction, which induces sensory separation.

The ability of robotics systems to purposefully shape the sensory information through 
their actions, or morphology, and to learn from the induced structure has the potential to 
change the learning landscape within robotics systems. In this context, learning may be 
thought of not as a process that starts in the information world but rather as one that exists 
in the physical world, where “learning” the actions and interactions appropriate for sensory 
perception is the first step toward appropriate learning of the sensory stimuli at a later stage.

Additional Reading and Resources

• ​ A comprehensive review of papers on soft robotics (up to 2007): Trivedi, Deepak, Chris-
topher D. Rahn, William M. Kier, and Ian D. Walker. 2008. “Soft Robotics: Biological 
Inspiration, State of the Art, and Future Research.” Applied Bionics and Biomechanics 5 (3): 
99–117.
• ​ Paper extensively discussing the connection between cognition, body morphology, and 
material properties: Pfeifer, Rolf, Fumiya Iida, and Max Lungarella. 2014. “Cognition 
from the Bottom Up: On Biological Inspiration, Body Morphology, and Soft Materials.” 
Trends in Cognitive Sciences 18 (8): 404–413.
• ​ Recent overview of current research, technologies, and applications of soft robotics: 
Laschi, Cecilia, Jonathan Rossiter, Fumiya Iida, Matteo Cianchetti, and Laura Margheri. 
Soft Robotics: Trends, Applications and Challenges. Proceedings of the Soft Robotics 
Week. Berlin: Springer.
• ​ Soft robotic tool kit website: https://softroboticstoolkit​.com.
• ​ Soft robotics TC website: http://softrobotics​.org.
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