All dataset and codes are shared publically here

2022

  1. Hardman, D., George Thuruthel, T. & Iida, F. Manipulation of free-floating objects using Faraday flows and deep reinforcement learning. Sci Rep 12, 335 (2022). https://doi.org/10.1038/s41598-021-04204-9
  2. Hardman, D., George Thuruthel, T., & Iida, F. Self-Healing Ionic Gelatin/Glycerol Hydrogels for Strain Sensing Applications. NPG Asia Materials https://doi.org/10.17863/CAM.79081
  3. George Thuruthel, T., Gardner, P., & Iida, F. Closing the Control Loop with Time-Variant Embedded Soft Sensors and Recurrent Neural Networks. Soft Robotics https://doi.org/10.17863/CAM.80076
  4. Voysey, I., George Thuruthel, T., & Iida, F. (2021). Autonomous dishwasher loading from cluttered trays using pre‐trained deep neural networks. Engineering Reports, 3 (5) https://doi.org/10.1002/eng2.12321
  5. George Thuruthel, T., Bosman, A. W., Hughes, J., & Iida, F. (2021). Soft Self-Healing Fluidic Tactile Sensors with Damage Detection and Localization Abilities.. Sensors (Basel) https://doi.org/10.3390/s21248284
  6. Kashef Tabrizian, S., Sahraeeazartamar, F., Brancart, J., Roels, E., Ferrentino, P., Legrand, J., … Terryn, S. (Accepted/In press). A Healable Resistive Heater as a Stimuli-Providing System in Self-Healing Soft Robots. IEEE Robotics and Automation Letters.
  7. Raffa, P., Kassi, A., Gosschalk, J., Migliore, N., Polgar, L.M., Picchioni, F., A Structure-Properties Relationship Study of Self-Healing Materials Based on Styrene and Furfuryl Methacrylate Cross-Linked via Diels–Alder Chemistry Macromolecular Materials and Engineering, https://doi.org/10.1002/mame.202170010

2021

  1. Seppe Terryn, Jakob Langenbach , Ellen Roels, Joost Brancart,Camille Bakkali-Hassani, Quentin-Arthur Poutrel, Antonia Georgopoulou, Thomas George Thuruthel, Ali Safaei, Pasquale Ferrentino, Tutu Sebastian, Sophie Norvez, Fumiya Iida, Anton W. Bosman, François Tournilhac, Frank Clemens, Guy Van Assche, Bram Vanderborght (2021) A review on self-healing materials for soft robotics. ‘Materials Today’ https://doi.org/10.1016/j.mattod.2021.01.009
  2. Thomas George ThuruthelG. PicardiF. IidaC. Laschi and M. Calisti Learning to stop: a unifying principle for legged locomotion in varying environments. Royal Society Publications
  3. D. Hardman, J. Hughes, T. G. Thuruthel, K. Gilday and F. Iida, “3D Printable Sensorized Soft Gelatin Hydrogel for Multi-Material Soft Structures,” in IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5269-5275, July 2021, doi: 10.1109/LRA.2021.3072600. PDF version.
  4. Costi, L., George Thuruthel, T., & Iida, F. Topological Study on the Design of Soft Strain Sensors for Simultaneous Multi-point Contact Localization. RoboSoft 2021. Poster – PDF version.
  5. T. G. Thuruthel, J. Hughes, A. Georgopoulou, F. Clemens and F. Iida, “Using Redundant and Disjoint Time-Variant Soft Robotic Sensors for Accurate Static State Estimation,” in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2099-2105, April 2021, doi: 10.1109/LRA.2021.3061399. PDF version.
  6. Moazzen, K., Rossegger, E., Alabiso, W., Shaukat, U., & Schlögl, S. (2021). Role of Organic Phosphates and Phosphonates in Catalyzing Dynamic Exchange Reactions in Thiol‐Click Vitrimers. Macromolecular Chemistry and Physics, 2100072. DOI: https://doi.org/10.1002/macp.202100072.
  7. Safaei, A.; Terryn, S.; Vanderborght, B.; Van Assche, G.; Brancart, J. The Influence of the Furan and Maleimide Stoichiometry on the Thermoreversible Diels–Alder Network Polymerization. Polymers 202113, 2522. https://doi.org/10.3390/polym13152522
  8. Georgopoulou, A.; Bosman, A.W.; Brancart, J.; Vanderborght, B.; Clemens, F. Supramolecular Self-Healing Sensor Fiber Composites for Damage Detection in Piezoresistive Electronic Skin for Soft Robots. Polymers 202113, 2983. https://doi.org/10.3390/polym13172983
  9. Lipase-Catalyzed EpoxyAcid Addition and Transesterification : from Model Molecule Studies to Network Build-Up C. Bakkali-Hassani, Q.-A. Poutrel, J. Langenbach, S. Chappuis, J.J. Blaker, M. Gresil, F. Tournilhac Biomacromolecules, asap, DOI:10.1021/acs.biomac.1c00820
  10. Epoxy homopolymerization as a tool to tune the thermo-mechanical properties and fracture toughness of vitrimers K. Tangthana-umrung, Q.-A. Poutrel, M. Gresil Macromolecules 2021, 54, 18, 8393–8406, DOI:10.1021/acs.macromol.1c00861
  11. Ferrentino, P., Kashef Tabrizian, S., Brancart, J., Van Assche, G., Vanderborght, B., & Terryn, S. (2021). FEA-Based Inverse Kinematic Control: Hyperelastic Material Characterization of Self-Healing Soft Robots. IEEE Robotics and Automation Magazine.
  12. Terryn S, Langenbach J, Roels E, Brancart J, Bakkali-Hassani C, Poutrel Q-A, Georgopoulou A, George-Thuruthel T., Safaei A, Ferrentino P., Sebastian T, Norvez S, Iida F, Bosman A, Tournilhac F, Clemens F, Van Assche G, Vanderborght B, A review on self-healing polymers for soft robotics, Materials Today, Volume 47, 2021, https://doi.org/10.1016/j.mattod.2021.01.009.
  13. Roels, E., Terryn, S., Iida, F., Bosman, Anton W., Norvez, S., Clemens, F., Van Assche, G., Vanderborght, B., Brancart, J., Processing of Self-Healing Polymers for Soft Robotics, Advanced Materials, https://doi.org/10.1002/adma.202104798
  14. Georgopoulou Antonia, Vanderborght Bram, Clemens Frank, Fabrication of a soft robotic gripper with integrated strain sensing elements using multi-material additive manufacturing, Frontiers in Robotics and AI, VOLUME 8, 2021, https://doi.org/10.3389/frobt.2021.615991
  15. Kanokporn Tangthana-umrung, Quentin Arthur Poutrel, and Matthieu Gresil, Epoxy Homopolymerization as a Tool to Tune the Thermo-Mechanical Properties and Fracture Toughness of Vitrimers Macromolecules 2021 54 (18), 8393-8406, doi:10.1021/acs.macromol.1c00861
  16. Jakob Langenbach, Camille Bakkali-Hassani, Quentin-Arthur Poutrel, Antonia Georgopoulou, Frank Clemens, François Tournilhac, and Sophie Norvez, Adhesion and Stiffness Matching in Epoxy-Vitrimers/Strain Sensor Fiber Laminates, ACS Applied Polymer Materials, doi: 10.1021/acsapm.1c01648
  17. Bakkali-Hassani C, Poutrel QA, Langenbach J, Chappuis S, Blaker JJ, Gresil M, Tournilhac F. Lipase-Catalyzed Epoxy-Acid Addition and Transesterification: from Model Molecule Studies to Network Build-Up. Biomacromolecules. 2021 Nov 8;22(11):4544-4551. doi: 10.1021/acs.biomac.1c00820.
  18. F. Clemens, M. Melnykowycz, F. Bär, D. Goldenstein and A. Georgopoulou, “2D Printing of Piezoresistive Auxetic Silicone Sensor Structures,” in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2541-2546, April 2021, doi: 10.1109/LRA.2021.3062000.
  19. Georgopoulou A, Egloff L, Vanderborght B, Clemens F. A Soft Pneumatic Actuator with Integrated Deformation Sensing Elements Produced Exclusively with Extrusion Based Additive Manufacturing. Engineering Proceedings. 2021; 6(1):11. https://doi.org/10.3390/I3S2021Dresden-10097
  20. Georgopoulou A, Michel S, Clemens F. Sensorized Robotic Skin Based on Piezoresistive Sensor Fiber Composites Produced with Injection Molding of Liquid Silicone. Polymers. 2021; 13(8):1226. https://doi.org/10.3390/polym13081226
  21. Georgopoulou Antonia, Vanderborght Bram, Clemens Frank, Fabrication of a soft robotic gripper with integrated strain sensing elements using multi-material additive manufacturing, Frontiers in Robotics and AI, Volume 8, 2021, https://doi.org/10.3389/frobt.2021.615991

2020

  1. Roels, E., Terryn, S., Brancart, J., Verhelle, R., Van Assche, G., & Vanderborght, B. (2020). Additive Manufacturing for Self-Healing Soft Robots. Soft Robotics.
  2. Shih, B., Shah, D., Li, J.,  Thuruthel,  T.  G., Iida, F., Park, Y.  L., Bao,  Z.,Kramer, R., & Tolley, M. T. (2019).  Electronic Skins and Machine Learning for Intelligent Soft Robots. Science Robotics 
  3. Thuruthel, T. G., Gilday K., & Iida, F. (2020). Drift-Free Latent Space Representation for Soft Strain Sensors. IEEE International Conference on Soft Robotics. 
  4. Terryn, S.; Roels, E.; Brancart, J.; Assche, G.V.; Vanderborght, B. Self-Healing and High Interfacial Strength in Multi-Material Soft Pneumatic Robots via Reversible Diels–Alder Bonds. Actuators 2020, 9, 34.
  5. George Thuruthel, T., Hughes, J., & Iida, F. Joint Entropy-based Morphology Optimization of Soft Strain SensorNetworks for Functional Robustness. IEEE Sensors Journal
  6. Georgopoulou A. and Clemens F. (2020) Piezoresistive Elastomer-Based Composite Strain Sensors and Their Applications. ACS Applied Electronic Materials, 2, 7, 1826–1842.
  7. Georgopoulou A., Sebastian T., Clemens F. (2020) Thermoplastic elastomer composite filaments for strain sensing applications extruded with a fused deposition modelling 3D printer. Flexible and Printed Electronics, 5, 035002
  8. Georgopoulou A., Kummerlöwe C., Clemens F. (2020) Effect of the Elastomer Matrix on Thermoplastic Elastomer-Based Strain Sensor Fiber Composites. Sensors20(8), 2399 
  9. George Thuruthel T, Renda F and Iida F (2020) First-Order Dynamic Modeling and Control of Soft Robots. Front. Robot. AI 7:95. doi: 10.3389/frobt.2020.00095
  10. Quentin-Arthur Poutrel, Jonny J. Blaker, Constantinos Soutis, François Tournilhac and Matthieu Gresil (2020) Dicarboxylic acid-epoxy vitrimers: influence of the off-stoichiometric acid content on cure reactions and thermo-mechanical properties. Polymer Chemistry, 11, 33, 5289-5398.
  11. Georgopoulou A, Egloff L, Vanderborght B, Clemens F. A Sensorized Soft Pneumatic Actuator Fabricated with Extrusion-Based Additive Manufacturing. Actuators. 2021; 10(5):102. https://doi.org/10.3390/act10050102
  12. S. Terryn, J. Brancart, E. Roels, G. Van Assche and B. Vanderborght, “Room Temperature Self-Healing in Soft Pneumatic Robotics: Autonomous Self-Healing in a Diels-Alder Polymer Network,” in IEEE Robotics & Automation Magazine, vol. 27, no. 4, pp. 44-55, Dec. 2020, doi: 10.1109/MRA.2020.3024275.
  13. Antonia Georgopoulou, Silvain Michel, Bram Vanderborght, Frank Clemens, Piezoresistive sensor fiber composites based on silicone elastomers for the monitoring of the position of a robot arm, Sensors and Actuators A: Physical, Volume 318, 2021, https://doi.org/10.1016/j.sna.2020.112433.
  14. Antonia Georgopoulou, Frank Clemens, Piezoresistive Elastomer-Based Composite Strain Sensors and Their Applications, ACS Applied Electronic Materials 2020 2 (7), 1826-1842, https://doi.org/10.1021/acsaelm.0c00278
  15. Georgopoulou, Antonia & Sebastian, Tutu & Clemens, Frank. (2020). Thermoplastic elastomer composite filaments for strain sensing applications extruded with an FDM 3D printer. Flexible and Printed Electronics. 5. 10.1088/2058-8585/ab9a22, DOI:10.1088/2058-8585/ab9a22
  16. Georgopoulou A, Kummerlöwe C, Clemens F. Effect of the Elastomer Matrix on Thermoplastic Elastomer-Based Strain Sensor Fiber Composites. Sensors. 2020; 20(8):2399. https://doi.org/10.3390/s20082399
  17. George Thuruthel Thomas, Renda Federico, Iida Fumiya, First-Order Dynamic Modeling and Control of Soft Robots, Frontiers in Robotics and AI, Volume 7, 2020, https://doi.org/10.3389/frobt.2020.00095

Previous Publications

  1. Terryn, S., Brancart, J., Lefeber, D., Van Assche, G. and Vanderborght, B., 2017. Self-healing soft pneumatic robots. Science Robotics, 2(9), p.eaan4268.
  2. Roels, E., Terryn, S., Brancart, J., Van Assche, G., & Vanderborght, B. (2019, April). A Multi-Material Self-Healing Soft Gripper. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (pp. 316-321). IEEE.
  3. Denissen, W., Droesbeke, M., Nicolaÿ, R., Leibler, L., Winne, J.M. and Du Prez, F.E., 2017. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nature communications, 8, p.14857.
  4. Hughes, Josie, and Fumiya Iida. “Tactile sensing applied to the universal gripper using conductive thermoplastic elastomer.” Soft robotics 5.5 (2018): 512-526.
  5. Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. and Leibler, L., 2008. Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 451(7181), p.977.
  6. Montarnal, D., Capelot, M., Tournilhac, F. and Leibler, L., 2011. Silica-like malleable materials from permanent organic networks. Science, 334(6058), pp.965-968.
  7. Culha, U., Nurzaman, S., Clemens, F. and Iida, F., 2014. SVAS3: strain vector aided sensorization of soft structures. Sensors, 14(7), pp.12748-12770.
  8. Mattmann, C., Clemens, F. and Tröster, G., 2008. Sensor for measuring strain in textile. Sensors, 8(6), pp.3719-3732.
  9. Clemens, F.J., Koll, B., Graule, T., Watras, T., Binkowski, M., Mattmann, C. and Silveira, I., 2013. Development of piezoresistive fiber sensors, based on carbon black filled thermoplastic elastomer compounds, for textile application. In Advances in Science and Technology (Vol. 80, pp. 7-13). Trans Tech Publications.
  10. Terryn, S., Mathijssen, G., Brancart, J., Lefeber, D., Van Assche, G., & Vanderborght, B. (2015). Development of a self-healing soft pneumatic actuator: A first concept. Bioinspiration & biomimetics, 10(4), 046007.
  11. Terryn, S., Mathijssen, G., Brancart, J., Verstraten, T., Van Assche, G., & Vanderborght, B. (2016). Toward self-healing actuators: A preliminary concept. IEEE Transactions on Robotics, 32(3), 736-743.